Convergent LMI relaxations for nonconvex quadratic programs
نویسنده
چکیده
We consider the general nonconvex quadratic programming problem and provide a series of convex positive semidefinite programs (or LMI relaxations) whose sequence of optimal values is monotone and converges to the optimal value of the original problem. It improves and includes as a special case the well-known Shor’s LMI formulation. Often, the optimal value is obtained at some particular early relaxation as shown on some nontrivial test problems from Floudas and Pardalos [9].
منابع مشابه
Convex Relaxation Methods for Nonconvex Polynomial Optimization Problems
This paper introduces to constructing problems of convex relaxations for nonconvex polynomial optimization problems. Branch-and-bound algorithms are convex relaxation based. The convex envelopes are of primary importance since they represent the uniformly best convex underestimators for nonconvex polynomials over some region. The reformulationlinearization technique (RLT) generates LP (linear p...
متن کاملConvex quadratic relaxations of nonconvex quadratically constrained quadratic programs
Nonconvex quadratic constraints can be linearized to obtain relaxations in a wellunderstood manner. We propose to tighten the relaxation by using second order cone constraints, resulting in a convex quadratic relaxation. Our quadratic approximation to the bilinear term is compared to the linear McCormick bounds. The second order cone constraints are based on linear combinations of pairs of vari...
متن کاملGlobally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound
We consider a recent branch-and-bound algorithm of the authors for nonconvex quadratic programming. The algorithm is characterized by its use of semidefinite relaxations within a finite branching scheme. In this paper, we specialize the algorithm to the box-constrained case and study its implementation, which is shown to be a state-of-the-art method for globally solving box-constrained nonconve...
متن کاملGlobally solving nonconvex quadratic programming problems via completely positive programming
Nonconvex quadratic programming (QP) is an NP-hard problem that optimizes a general quadratic function over linear constraints. This paper introduces a new global optimization algorithm for this problem, which combines two ideas from the literature—finite branching based on the first-order KKT conditions and polyhedral-semidefinite relaxations of completely positive (or copositive) programs. Th...
متن کاملGlobally Solving Nonconvex QPs via Completely Positive Programming∗
Nonconvex quadratic programming is an NP-hard problem that optimizes a general quadratic function over linear constraints. This paper introduces a new global optimization algorithm for this problem, which combines two ideas from the literature—finite branching based on the first-order KKT conditions and polyhedral-semidefinite relaxations of completely positive (or copositive) programs. Through...
متن کامل